infixr 5 _∷_
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
data _⊎_ (A B : Set) : Set where
left : A → A ⊎ B
right : B → A ⊎ B
module Implementation
{A : Set}
(_≤_ : A → A → Set)
(cmp : (x y : A) → (x ≤ y) ⊎ (y ≤ x)) where
insert : (x : A) → List A → List A
insert x [] = x ∷ []
insert x (y ∷ ys) with cmp x y
... | left x≤y = x ∷ y ∷ ys
... | right y≤x = y ∷ insert x ys
sort : List A → List A
sort [] = []
sort (x ∷ xs) = insert x (sort xs)
module Verification₁ {A : Set} (_≤_ : A → A → Set) (cmp : (x y : A) → (x ≤ y) ⊎ (y ≤ x)) where
open Implementation _≤_ cmp
data IsOrdered : List A → Set where
empty : IsOrdered []
singleton : {x : A} → IsOrdered (x ∷ [])
cons : {x y : A} {ys : List A} → x ≤ y → IsOrdered (y ∷ ys) → IsOrdered (x ∷ y ∷ ys)
lemma₀ : (x y : A) (ys : List A) → y ≤ x → IsOrdered (y ∷ ys) → IsOrdered (y ∷ insert x ys)
lemma₀ x y [] y≤x p = cons y≤x singleton
lemma₀ x y (z ∷ ys) y≤x (cons y≤z q) with cmp x z
... | left x≤z = cons y≤x (cons x≤z q)
... | right z≤x = cons y≤z (lemma₀ x z ys z≤x q)
lemma : (x : A) (ys : List A) → IsOrdered ys → IsOrdered (insert x ys)
lemma x [] p = singleton
lemma x (y ∷ ys) p with cmp x y
... | left x≤y = cons x≤y p
... | right y≤x = lemma₀ x y ys y≤x p
theorem : (xs : List A) → IsOrdered (sort xs)
theorem [] = empty
theorem (x ∷ xs) = lemma x (sort xs) (theorem xs)
cheatsort : List A → List A
cheatsort xs = []
cheattheorem : (xs : List A) → IsOrdered (cheatsort xs)
cheattheorem xs = empty
module Verification₂ {A : Set} (_≤_ : A → A → Set) (cmp : (x y : A) → (x ≤ y) ⊎ (y ≤ x)) where
open Implementation _≤_ cmp
data _◂_↝_ : A → List A → List A → Set where
here : {x : A} {xs : List A} → x ◂ xs ↝ (x ∷ xs)
there : {x y : A} {ys xys : List A} → x ◂ ys ↝ xys → x ◂ (y ∷ ys) ↝ (y ∷ xys)
data IsPerm : List A → List A → Set where
empty : IsPerm [] []
cons : {x : A} {xs ys xys : List A} → (x ◂ ys ↝ xys) → IsPerm xs ys → IsPerm (x ∷ xs) xys
example : (x y z : A) → IsPerm (x ∷ y ∷ z ∷ []) (z ∷ x ∷ y ∷ [])
example x y z = {!!}
lemma : (x : A) (ys : List A) → x ◂ ys ↝ insert x ys
lemma x ys = {!!}
theorem : (xs : List A) → IsPerm xs (sort xs)
theorem xs = {!!}
module CorrectByConstruction₁
{A : Set} (_≤_ : A → A → Set)
(min : A) (min≤ : {x : A} → min ≤ x)
(cmp : (x y : A) → (x ≤ y) ⊎ (y ≤ x)) where
data OList (l : A) : Set where
nil : OList l
cons : (x : A) → l ≤ x → OList x → OList l
insert : {l : A} → (x : A) → l ≤ x → OList l → OList l
insert x l≤x nil = cons x l≤x nil
insert x l≤x (cons y l≤y ys) with cmp x y
... | left x≤y = cons x l≤x (cons y x≤y ys)
... | right y≤x = cons y l≤y (insert x y≤x ys)
sort : List A → OList min
sort [] = nil
sort (x ∷ xs) = insert x min≤ (sort xs)
module CorrectByConstruction₂
{A : Set} (_≤_ : A → A → Set)
(min : A) (min≤ : {x : A} → min ≤ x)
(cmp : (x y : A) → (x ≤ y) ⊎ (y ≤ x)) where
data _◂_↝_ : A → List A → List A → Set where
here : {x : A} {xs : List A} → x ◂ xs ↝ (x ∷ xs)
there : {x y : A} {ys xys : List A} → x ◂ ys ↝ xys → x ◂ (y ∷ ys) ↝ (y ∷ xys)
data OPList (l : A) : List A → Set where
nil : OPList l []
cons : {ys xys : List A} → (x : A) → OPList x ys → l ≤ x → (x ◂ ys ↝ xys) → OPList l xys
insert : {!!}
insert = {!!}
sort : (xs : List A) → OPList min xs
sort = {!!}
data *_ (A : Set) : Set where
module Lift {A : Set} (_≤_ : A → A → Set) where