{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.BigOps where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.FinData
open import Cubical.Data.Bool
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Monoid.BigOp
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring.Base
open import Cubical.Algebra.Ring.Properties
private
variable
ℓ : Level
module KroneckerDelta (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
δ : {n : ℕ} (i j : Fin n) → R
δ i j = if i == j then 1r else 0r
module Sum (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
open MonoidBigOp (Ring→AddMonoid R')
open RingTheory R'
open KroneckerDelta R'
∑ = bigOp
∑Ext = bigOpExt
∑0r = bigOpε
∑Last = bigOpLast
∑Split : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W
∑Split = bigOpSplit +Comm
∑Split++ : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m)
→ ∑ (V ++Fin W) ≡ ∑ V + ∑ W
∑Split++ = bigOpSplit++ +Comm
∑Mulrdist : ∀ {n} → (x : R) → (V : FinVec R n)
→ x · ∑ V ≡ ∑ λ i → x · V i
∑Mulrdist {n = zero} x _ = 0RightAnnihilates x
∑Mulrdist {n = suc n} x V =
x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·Rdist+ _ _ _ ⟩
x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + ∑Mulrdist x (V ∘ suc) i) ⟩
x · V zero + ∑ (λ i → x · V (suc i)) ∎
∑Mulldist : ∀ {n} → (x : R) → (V : FinVec R n)
→ (∑ V) · x ≡ ∑ λ i → V i · x
∑Mulldist {n = zero} x _ = 0LeftAnnihilates x
∑Mulldist {n = suc n} x V =
(V zero + ∑ (V ∘ suc)) · x ≡⟨ ·Ldist+ _ _ _ ⟩
V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + ∑Mulldist x (V ∘ suc) i) ⟩
V zero · x + ∑ (λ i → V (suc i) · x) ∎
∑Mulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r
∑Mulr0 V = sym (∑Mulldist 0r V) ∙ 0RightAnnihilates _
∑Mul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r
∑Mul0r V = sym (∑Mulrdist 0r V) ∙ 0LeftAnnihilates _
∑Mulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · δ i j) ≡ V j
∑Mulr1 (suc n) V zero = (λ k → ·Rid (V zero) k + ∑Mulr0 (V ∘ suc) k) ∙ +Rid (V zero)
∑Mulr1 (suc n) V (suc j) =
(λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · δ x j))
∙∙ +Lid _ ∙∙ ∑Mulr1 n (V ∘ suc) j
∑Mul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (δ j i) · V i) ≡ V j
∑Mul1r (suc n) V zero = (λ k → ·Lid (V zero) k + ∑Mul0r (V ∘ suc) k) ∙ +Rid (V zero)
∑Mul1r (suc n) V (suc j) =
(λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (δ j i) · V (suc i)))
∙∙ +Lid _ ∙∙ ∑Mul1r n (V ∘ suc) j
∑Dist- : ∀ {n : ℕ} (V : FinVec R n) → ∑ (λ i → - V i) ≡ - ∑ V
∑Dist- V = ∑Ext (λ i → -IsMult-1 (V i)) ∙ sym (∑Mulrdist _ V) ∙ sym (-IsMult-1 _)
module Product (R' : Ring ℓ) where
private
R = fst R'
open RingStr (snd R')
open RingTheory R'
open MonoidBigOp (Ring→MultMonoid R')
∏ = bigOp
∏Ext = bigOpExt
∏0r = bigOpε
∏Last = bigOpLast