module Antwerp.Dickson where
open import Data.Nat
open import Data.Product
Good : (ℕ → ℕ) → Set
Good f = Σ[ i ∈ ℕ ] f i ≤ f (suc i)
example : ℕ → ℕ
example 0 = 9
example 1 = 8
example 2 = 3
example _ = 6
module Classical where
open import Antwerp.Minimum.Classical
theorem : (f : ℕ → ℕ) → Good f
theorem f with minimum f
... | i , p = i , p (suc i)
module ConstructiveButUninformative (⊥ : Set) where
open import Antwerp.Minimum.Constructive ⊥
theorem : (f : ℕ → ℕ) → ¬ ¬ (Good f)
theorem f = do
i , p ← minimum f
q ← p (suc i)
return (i , q)
module Constructive where
theorem : (f : ℕ → ℕ) → Good f
theorem f = ConstructiveButUninformative.theorem (Good f) f λ r → r