{-# OPTIONS --allow-unsolved-metas #-}
{-
  AGDA IN PADOVA 2024
  Exercise sheet 1

  ┌─ SHORTCUTS ───────────────────────┐    ┌─ BACKSLASH CHARACTERS ─┐
  │ C-c C-l   = load file             │    │ \bN    = ℕ             │
  │ C-c C-c   = case split            │    │ \alpha = α             │
  │ C-c C-SPC = check hole            │    │ \to    = →             │
  │ C-c C-,   = see context           │    │ \cdot  = ·             │
  │ C-c C-.   = see context and goal  │    │ \::    = ∷             │
  │ C-c C-d   = display type          │    │ \==    = ≡             │
  │ C-c C-v   = evaluate expression   │    └────────────────────────┘
  │ C-z       = enable Vi keybindings │    Use M-x describe-char to
  │ C-x C-+   = increase font size    │    lookup input method for
  └───────────────────────────────────┘    symbol under cursor.

  You can open this file in an Agdapad session by pressing C-x C-f ("find file")
  and then entering the path to this file: ~/Padova2024/exercise01.agda.
  As this file is read-only, you can then save a copy of this file to your personal
  directory and edit that one: File > Save As... For instance, you can save this file
  as ~/solutions01.agda.
-}


-- ────────────────────
-- ────[ BOOLEANS ]────
-- ────────────────────

data Bool : Set where
  false : Bool
  true  : Bool

_&&_ : Bool  Bool  Bool
false && b     = false
true  && false = false
true  && true  = true

-- EXERCISE: Implement boolean "or".
-- "false || true" should evaluate to "true".
-- "true  || true" should evaluate to "true".
_||_ : Bool  Bool  Bool
a || b = {!!}

-- EXERCISE: Implement a function "is-tautology₁?" which checks whether
-- a given input function is constantly true. For instance, if f x = x,
-- then "is-tautology₁ f" should evaluate to "false".
is-tautology₁ : (Bool  Bool)  Bool
is-tautology₁ f = {!!}

-- EXERCISE: Implement a function "is-tautology₂?" which checks whether
-- a given input function of two arguments is constantly true. For
-- instance, if f x y = true, then "is-tautology₂ f" should evaluate to "true".
is-tautology₂ : (Bool  Bool  Bool)  Bool
is-tautology₂ f = {!!}


-- ───────────────────────────────────────
-- ────[ NATURAL NUMBERS PROGRAMMING ]────
-- ───────────────────────────────────────

data  : Set where
  zero : 
  succ :   

_+_ :     
zero   + b = b
succ a + b = succ (a + b)

-- EXERCISE: Define the function "half" which divides its input by two.
-- For instance "half (succ (succ (succ (succ zero))))" should be "succ (succ zero)"
-- and "half (succ (succ (succ zero)))" should be "succ zero" (so we round down).
half :   
half n = {!!}

-- EXERCISE: Define (cut-off) subtraction. For instance "succ zero - succ zero"
-- and "succ zero - succ (succ zero)" should both be "zero".
_-_ :     
a - b = {!!}

-- EXERCISE: Define multiplication and exponentiation.

-- EXERCISE: Define a function "max" which returns the maximum of two inputs.
-- For instance "max (succ zero) zero" should be "succ zero".

-- EXERCISE: Define a function "eq?" which determines whether its two
-- input numbers are equal. For instance, "eq? zero zero" should evaluate
-- to "true" while "eq? zero (succ zero)" should evaluate to "false".
eq? :     Bool
eq? a b = {!!}

-- EXERCISE: Define a function "≤?" which determines whether its first
-- argument is less than or equal to its second. For instance, "≤?
-- zero zero" should evaluate to "true" while "≤? (succ zero) zero"
-- should evaluate to "false".
≤? :     Bool
≤? a b = {!!}

-- EXERCISE: Define a function "even?" which determines whether its input is even.
-- For instance, "even? zero" and "even? (succ (succ zero))" should both evaluate to "true",
-- while "even? (succ zero)" should evaluate to "false".
even? :   Bool
even? n = {!!}

-- EXERCISE: Define a function "odd?" which determines whether its input is odd.
-- You may use the "even?" function from before.
odd? :   Bool
odd? n = {!!}


-- ─────────────────
-- ────[ TYPES ]────
-- ─────────────────

-- EXERCISE: Describe the following type in simple terms. What are its values?
data Weird : Set where
  foo : Weird  Weird

-- EXERCISE: Define a manifestly empty type called "Empty".
-- Can you define a function Empty → ℕ?
-- Can you define a function in the other direction, so ℕ → Empty?

-- EXERCISE: Write a function "Endo" which takes as input a type X and returns
-- as output the type of functions X → X.
Endo : ?
Endo = ?


-- ─────────────────────────────────────────────
-- ────[ FIRST PROOFS WITH NATURAL NUMBERS ]────
-- ─────────────────────────────────────────────

data IsZero :   Set where
  case-zero : IsZero zero

data IsNonzero :   Set where
  case-succ : (n : )  IsNonzero (succ n)

-- EXERCISE: Prove that the sum of two numbers, both of which are zero, is zero again.
sum-zero : (x y : )  IsZero x  IsZero y  IsZero (x + y)
sum-zero = ?

-- EXERCISE: State and prove: The sum of two numbers, the first of which is nonzero, is nonzero.
sum-nonzero : ?
sum-nonzero = ?

-- EXERCISE: Prove that the (contradictory) assumption that zero is nonzero implies
-- the (also contradictory) statement that succ zero is zero.
zero-is-not-nonzero : IsNonzero zero  IsZero (succ zero)
zero-is-not-nonzero = ?