{-# OPTIONS --allow-unsolved-metas #-}
{-
AGDA IN PADOVA 2024
Exercise sheet 2
┌─ SHORTCUTS ───────────────────────┐ ┌─ BACKSLASH CHARACTERS ─┐
│ C-c C-l = load file │ │ \bN = ℕ │
│ C-c C-c = case split │ │ \alpha = α │
│ C-c C-SPC = check hole │ │ \to = → │
│ C-c C-, = see context │ │ \cdot = · │
│ C-c C-. = see context and goal │ │ \:: = ∷ │
│ C-c C-d = display type │ │ \== = ≡ │
│ C-c C-v = evaluate expression │ └────────────────────────┘
│ C-z = enable Vi keybindings │ Use M-x describe-char to
│ C-x C-+ = increase font size │ lookup input method for
└───────────────────────────────────┘ symbol under cursor.
You can open this file in an Agdapad session by pressing C-x C-f ("find file")
and then entering the path to this file: ~/Padova2024/exercise02.agda.
As this file is read-only, you can then save a copy of this file to your personal
directory and edit that one: File > Save As... For instance, you can save this file
as ~/solutions02.agda.
-}
-- ─────────────────────────────
-- ────[ BASIC DEFINITIONS ]────
-- ─────────────────────────────
data Bool : Set where
false : Bool
true : Bool
_&&_ : Bool → Bool → Bool
false && b = false
true && false = false
true && true = true
!_ : Bool → Bool
! false = true
! true = false
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + b = b
succ a + b = succ (a + b)
_·_ : ℕ → ℕ → ℕ
zero · b = zero
succ a · b = b + (a · b)
data ⊥ : Set where
-- ──────────────────────────────────
-- ────[ PROGRAMMING WITH LISTS ]────
-- ──────────────────────────────────
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
-- EXERCISE: Define a function which sums the numbers of a given list.
sum : List ℕ → ℕ
sum xs = {!!}
-- EXERCISE: Define a function which computes the length of a given list.
length : List ℕ → ℕ
length xs = {!!}
-- EXERCISE: Define the "map" function.
-- For instance, "map f (x ∷ y ∷ z ∷ []) = f x ∷ f y ∷ f z ∷ []".
map : {A B : Set} → (A → B) → List A → List B
map f xs = {!!}
-- ────────────────────────────────────
-- ────[ PROGRAMMING WITH VECTORS ]────
-- ────────────────────────────────────
data Vector (A : Set) : ℕ → Set where
[] : Vector A zero
_∷_ : {n : ℕ} → A → Vector A n → Vector A (succ n)
-- EXERCISE: Define a function which computes the length of a given vector.
-- There are two possible implementations, one which runs in constant time
-- and one which runs in linear time.
lengthV : {n : ℕ} {A : Set} → Vector A n → ℕ
lengthV = {!!}
lengthV' : {n : ℕ} {A : Set} → Vector A n → ℕ
lengthV' = {!!}
-- EXERCISE: Define the "map" function for vectors.
-- For instance, "map f (x ∷ y ∷ z ∷ []) = f x ∷ f y ∷ f z ∷ []".
mapV : {n : ℕ} {A B : Set} → (A → B) → Vector A n → Vector B n
mapV f xs = {!!}
-- EXERCISE: Define these vector functions.
-- For instance, "zipWithV f (x ∷ y ∷ []) (a ∷ b ∷ [])" should evaluate to "f x a ∷ f y b ∷ []".
zipWithV : {A B C : Set} {n : ℕ} → (A → B → C) → Vector A n → Vector B n → Vector C n
zipWithV f xs ys = {!!}
-- For instance, "dropV (succ zero) (a ∷ b ∷ c ∷ [])" should evaluate to "b ∷ c ∷ []".
dropV : {A : Set} {n : ℕ} (k : ℕ) → Vector A (k + n) → Vector A n
dropV k xs = {!!}
-- For instance, "takeV (succ zero) (a ∷ b ∷ c ∷ [])" should evaluate to "a ∷ []".
takeV : {A : Set} {n : ℕ} (k : ℕ) → Vector A (k + n) → Vector A k
takeV n xs = {!!}
-- For instance, "(a ∷ b ∷ []) ++ (c ∷ d ∷ [])" should evaluate to "a ∷ b ∷ c ∷ d ∷ []".
_++_ : {A : Set} {n m : ℕ} → Vector A n → Vector A m → Vector A (n + m)
xs ++ ys = {!!}
-- For instance, "snocV (a ∷ b ∷ []) c" should evaluate to "a ∷ b ∷ c ∷ []".
snocV : {A : Set} {n : ℕ} → Vector A n → A → Vector A (succ n)
snocV xs y = {!!}
-- For instance, "reverseV (a ∷ b ∷ c ∷ [])" should evaluate to "c ∷ b ∷ a ∷ []".
reverseV : {A : Set} {n : ℕ} → Vector A n → Vector A n
reverseV xs = {!!}
-- For instance, "concatV ((a ∷ b ∷ []) ∷ (c ∷ d ∷ []) ∷ [])" should evaluate to
-- "a ∷ b ∷ c ∷ d ∷ []".
concatV : {!!}
concatV = {!!}
-- ────────────────────────────────────────────
-- ────[ MORE PROOFS WITH NATURAL NUMBERS ]────
-- ────────────────────────────────────────────
-- "Even n" is the type of witnesses that "n" is even.
data Even : ℕ → Set where
base-even : Even zero
step-even : {n : ℕ} → Even n → Even (succ (succ n))
-- "Odd n" is the type of witnesses that "n" is odd.
data Odd : ℕ → Set where
base-odd : Odd (succ zero)
step-odd : {n : ℕ} → Odd n → Odd (succ (succ n))
-- EXERCISE: Show that the sum of even numbers is even.
lemma-sum-even : {a b : ℕ} → Even a → Even b → Even (a + b)
lemma-sum-even = {!!}
-- EXERCISE: Show that the successor of an even number is odd and vice versa.
lemma-succ-even : {a : ℕ} → Even a → Odd (succ a)
lemma-succ-even = {!!}
lemma-succ-odd : {a : ℕ} → Odd a → Even (succ a)
lemma-succ-odd = {!!}
-- EXERCISE: Show that the sum of odd numbers is even.
lemma-sum-odd : {a b : ℕ} → Odd a → Odd b → Even (a + b)
lemma-sum-odd = {!!}
-- EXERCISE: Show that the sum of an odd number with an even number is odd.
lemma-sum-mixed : {a b : ℕ} → Odd a → Even b → Odd (a + b)
lemma-sum-mixed = {!!}
-- EXERCISE: Show that it cannot be that a number is both even and odd.
lemma-odd-and-even : {a : ℕ} → Odd a → Even a → ⊥
lemma-odd-and-even P q = {!!}
-- EXERCISE: Show that every number is even or odd.
data _⊎_ (A B : Set) : Set where
left : A → A ⊎ B
right : B → A ⊎ B
-- For instance, if x : A, then left x : A ⊎ B.
lemma-even-odd : (a : ℕ) → Even a ⊎ Odd a
lemma-even-odd a = {!!}
-- ─────────────────────────────
-- ────[ PROOFS WITH LISTS ]────
-- ─────────────────────────────
-- EXERCISE: Define a predicate "AllEven" for lists of natural numbers
-- such that "AllEven xs" is inhabited if and only if all entries of the list "xs" are even.
-- By convention, the empty list counts as consisting of even-only elements.
data AllEven : List ℕ → Set where
{- supply appropriate clauses here -}
lemma-sum-of-even-list-is-even : (xs : List ℕ) → AllEven xs → Even (sum xs)
lemma-sum-of-even-list-is-even xs p = {!!}
-- EXERCISE: Define a predicate "All P" for lists of elements of some type A
-- and predicates "P : A → Set" such that "All P xs" is inhabited if
-- and only if all entries of the list "xs" satisfy P.
-- The special case "All Even" should coincide with the predicate
-- "AllEven" from the previous exercise.
data All {A : Set} (P : A → Set) : List A → Set where
{- give appropriate clauses -}
-- EXERCISE: Define a predicate "Any P" for lists of elements of some type A
-- and predicates "P : A → Set" such that "Any P xs" is inhabited if
-- and only if at least one entry of the list "xs" satisfies P.
data Any {A : Set} (P : A → Set) : List A → Set where
{- give appropriate clauses -}
-- EXERCISE: Define a relation "_∈_" such that "x ∈ ys" is the type
-- of witnesses that x occurs in the list ys.
data _∈_ {A : Set} : A → List A → Set where
{- give appropriate clauses -}